
HIGH EFFICIENCY VIDEO CODING (HEVC)

Matthew Goldman Senior Vice President TV Compression Technology Ericsson

MOORE'S LAW

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Date of introduction

TRANSLATED TO MEMORY COST ...

Year	Cost for 1 GigaByte = 1,000 MBytes (Storage for 2 Scanned File Cabinets)	Cost for 1 TeraByte = 1,000 GBytes (Storage for 2,000 Scanned File Cabinets)
1992	1,000.00	1,000,000.00
1993	625.00	625,000.00
1994	390.63	390,625.00
1995	244.14	244,140.63
1996	152.59	152,587.89
1997	95.37	95,367.43
1998	59.60	59,604.64
1999	37.25	37,252.90
2000	23.28	23,283.06
2001	14.55	14,551.92
2002	9.09	9,094.95
2003	5.68	5,684.34
2004	3.55	3,552.71
2005	2.22	2,220.45
2006	1.39	1,387.78
2007	0.87	867.36
2008	0.54	542.10
2009	0.34	338.81
2010	0.21	211.76
2011	0.13	132.35
2012	0.08	82.72
2013	0.05	51.70
2014	0.03	32.31
2015	0.02	20.19

VIDEO COMPRESSION EVOLUTION

Need a higher performing and more bandwidth efficient video compression standard, to enable the launch of new services and support the explosion of available content

- > Made possible by increased computing power available in consumer devices
- Moore's Law also enables the use of more advanced and complex encoding/decoding techniques
- Profiles are defined with different performance / complexity tradeoffs to enable different, economically viable applications

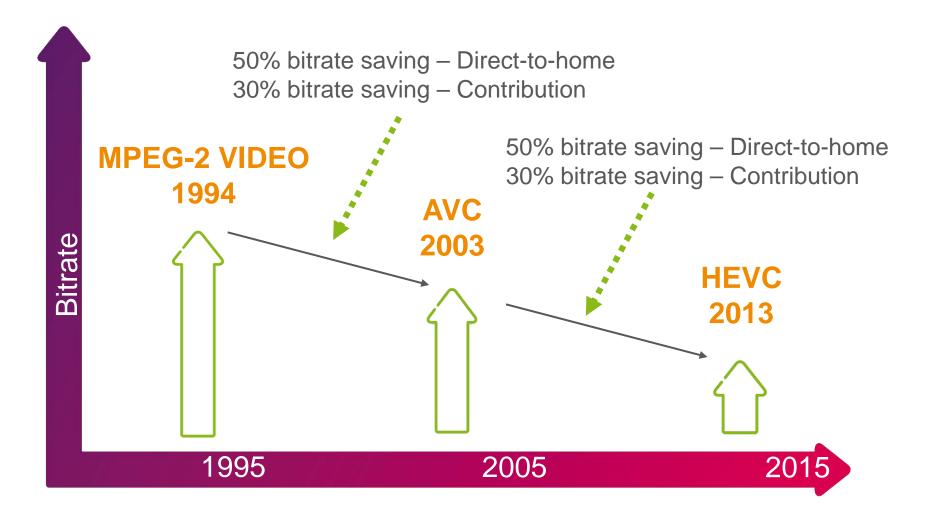
HIGH EFFICIENCY VIDEO CODING

- > A Joint Collaborative Team on Video Coding (JCT-VC) of MPEG & VCEG
- > Standards nomenclature: ISO/IEC 23008-2 MPEG-H Part 2 and ITU-T Rec. H.265
- * "Version 1" for Consumer/Direct-to-Home applications
 - 3 profiles, including Main and Main 10
 - Finalized January 2013
- Range Extensions (RExt) support Content Acquisition & Exchange
 - 15 profiles including Main 4:2:2 10, Main 4:2:2 12, Main 4:4:4 10, Main 4:4:4 12
 - Finalized April 2014

Scalable High-efficiency Video Coding (SHVC) supports layered coding

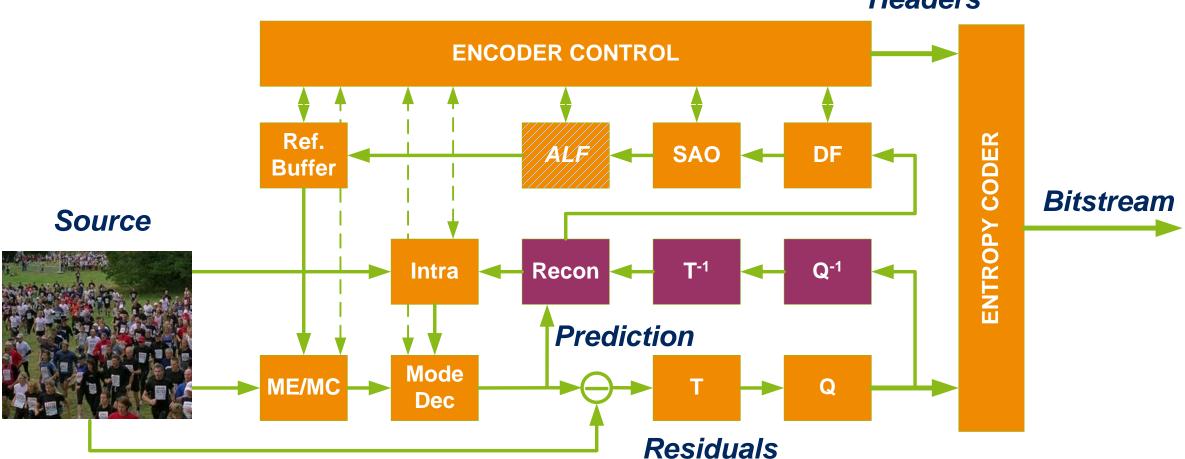
- Includes temporal, spatial, quality, color gamut scalability; 8-bit and 10-bit profiles
- Finalized July 2014

Screen Content Coding (SCC)

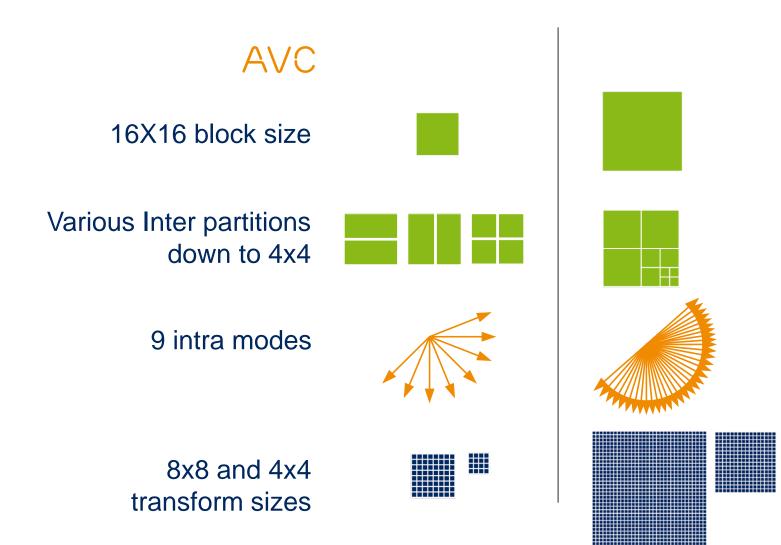

Expected completion February 2016

High Dynamic Range (HDR) & Wider Color Gamut (WCG) exploration

- Call for Evidence expected in February 2015 – Goal: single layer coding efficiency of >=15%


COMPRESSION BANDWIDTH EFFICIENCY TRENDS

HEVC ENCODER

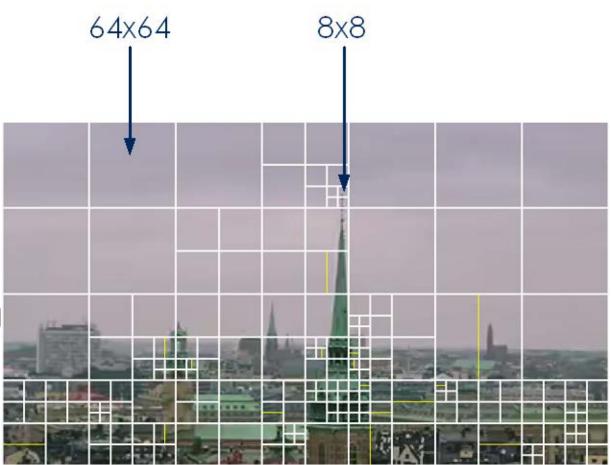


Headers

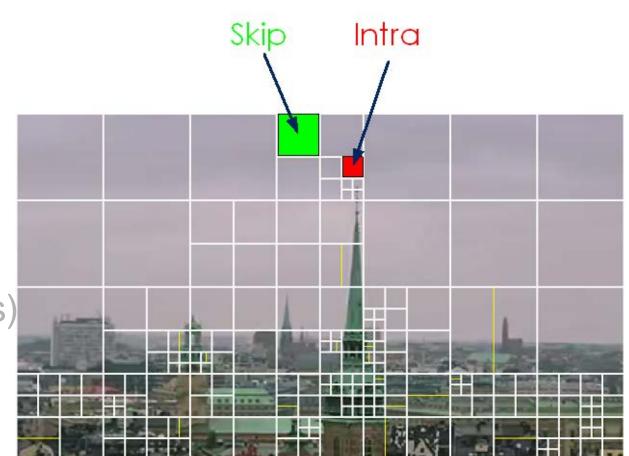
HIGH LEVEL TOOL COMPARISON

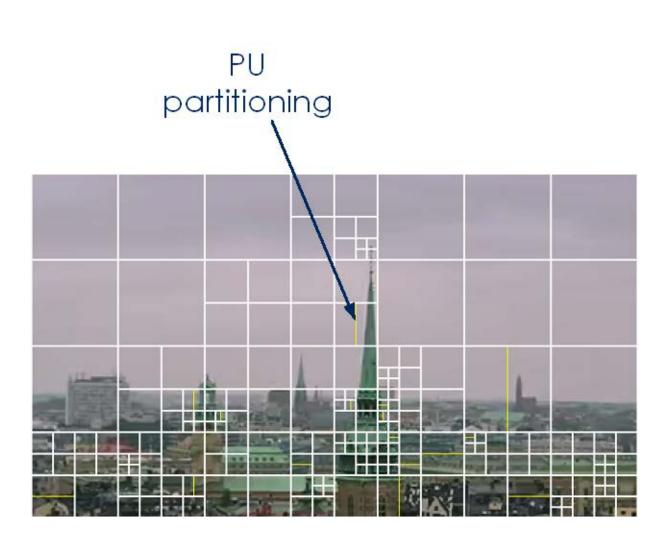
HEVC

64x64 block size


Hierarchical quad-tree partitioning down to 8x8 + 4x4 Transform Units

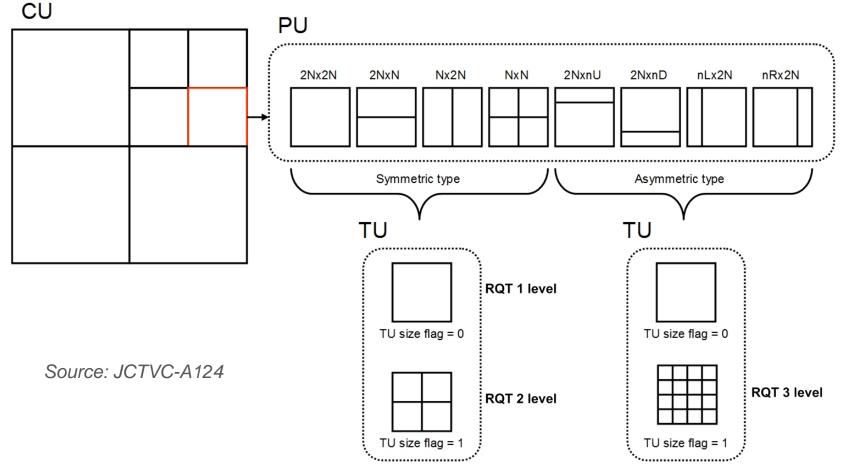
35 intra modes


32x32, 16x16, 8x8 and 4x4 transform sizes


- Coding Tree is collection of Coding Units (CU) – CU size 64x64 to 8x8
- CUs can have independent coding modes
- Further partitioning using Prediction Units (Motion Vectors)
- Independent Transform Tree partitioning from 32x32 to 4x4


- Coding Tree is collection of Coding Units (CU) – CU size 64x64 to 8x8
- CUs can have independent coding modes
- Further partitioning using Prediction Units (Motion Vectors)
- Independent Transform Tree partitioning from 32x32 to 4x4

- Coding Tree is collection of Coding Units (CU) – CU size 64x64 to 8x8
- CUs can have independent coding modes
- Further partitioning using Prediction Units (Motion Vectors)
- Independent Transform Tree partitioning from 32x32 to 4x4



- Coding Tree is collection of Coding Units (CU) – CU size 64x64 to 8x8
- CUs can have independent coding modes
- Further partitioning using **Prediction Units (Motion** Vectors)
- Independent Transform Tree partitioning from 32x32 to 4x4

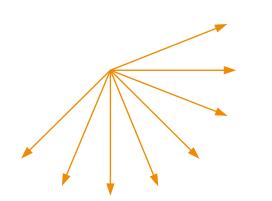
2

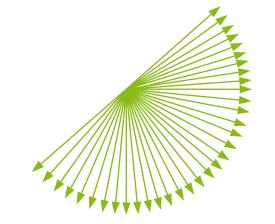
CODING UNITS: PREDICTION & TRANSFORM UNITS

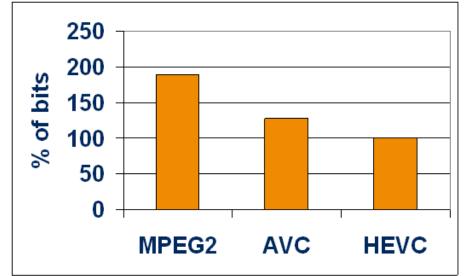
Separation of prediction and transform structures allows more flexible and efficient coding of video under various conditions and resolutions

© Ericsson 2014 | 2014-08-13 | Page 13

HEVC TOOLS - INTRA PREDICTION




AVC DC + 8 directional modes


HEVC

DC + Planar + 33 directional modes

HEVC TOOLS - IN-LOOP FILTERS

Deblocking Filter

- Similar to AVC deblocking filter but does not filter 4x4 block edges
- Sample Adaptive Offset (SAO) Filter
 - Calculates edge and band offsets signaled to decoder
 - Offsets added to reconstructed pixels
 - SAO is not restricted to block boundaries

No In-loop filters

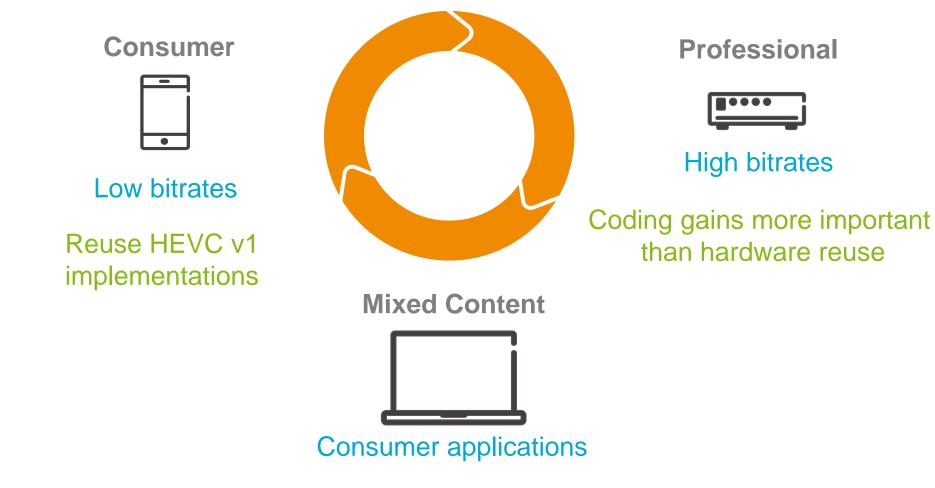
Deblocking filter + SAO filter

TOOL COMPARISON: AVC vs HEVC

AVC High Profile	HEVC Main Profile	
16x16 Macroblock	Coding Unit quadtree structure, 64x64 down to 8x8	
Partitions 16x16 to 4x4 square + non-square (inter)	Prediction Units, 64x64 to 8x8 square + non-square (inter) + asymmetric (inter)	
8x8 and 4x4 transforms	Transform Units, 32x32 to 4x4, 4x4 skip	
Intra prediction (8 directions + DC)	Intra prediction (33 directions + DC + planar)	
Inter prediction luma 6-tap + 2-tap, to 1/4 pel	Inter prediction luma 8-tap, to 1/4 pel	
Inter prediction chroma bi-linear interpolation	Inter prediction chroma 4-tap. to 1/8 pel	
Motion vector prediction	Advanced motion vector prediction (spatial + temporal)	
In-loop deblocking filter	In-loop deblocking filter & Sample Adaptive Offset (SAO) filter	
CABAC or CAVLC	CABAC using parallel operations	

CABAC = Context Adaptive Binary Arithmetic Coding CAVLC = Context Adaptive Variable Length Coding

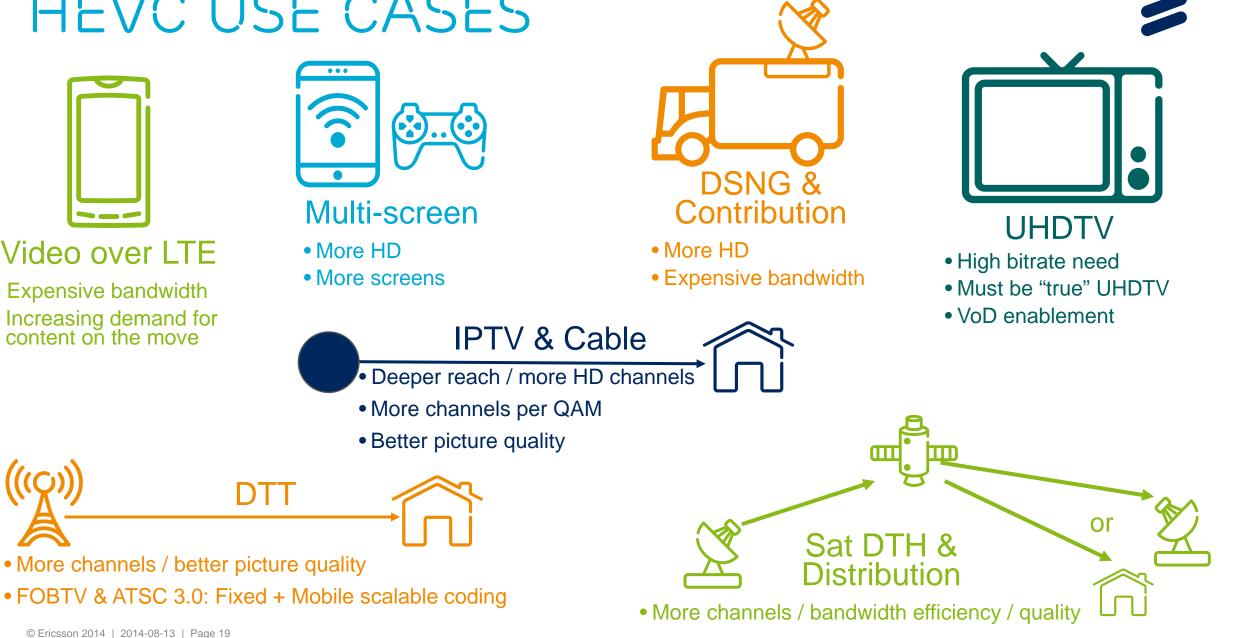
CONTRIBUTION: 4:2:2 VS. 4:2:0


Chroma samples 4:2:2 production flow 4:2: 4:2: 2 0 **Jaggies** Chroma rate = $\frac{1}{2}$ Chroma rate = $\frac{1}{4}$ Luma rate Luma rate Saves **33%** Saves **50%** bandwidth bandwidth Keying with 4:2:0

Source: http://www.dv.com/dv/magazine/2006/November/DV0611.hdvout.fig4.jpg

4:2:0 production flow

CONFLICTING GOALS FOR RANGE EXTENSIONS (REXT)


New tools for mixed 4:2:0 & 4:4:4 coding

HEVC USE CASES

- Expensive bandwidth
- Increasing demand for content on the move

HEVC IMPLEMENTATION DEPENDS ON MARKET SEGMENT NEEDS

Different market segments have different needs

- Software on COTS hardware for offline, mobile and OTT/multiscreen
- Software on purpose-built hardware for more demanding applications
- Product rollouts will depend on market segment readiness and will happen at different times
 - Encoders, decoders, production equipment, licensing, set-top boxes

*COTS = Commodity Off-The-Shelf

A BIT MORE ABOUT UHDTV

In context of broadcast television, "4K TV" is UHDTV Level 1 (UHD-1) or 4K UHDTV > UHDTV is not just about more pixels

 To be an immersive viewing experience, it's about "better" pixels ...

- Higher frame rate
- Higher dynamic range
- Wider color gamut
- Deeper sample bit depths

WHAT FORMAT WILL INDUSTRY SETTLE ON FOR 4K UHDTV?

True 4K UHDTV HEVC requires 80x more processing power than HD AVC

2

... and this discussion has not included the audio delivery format for UHDTV!

© Ericsson 2014 | 2014-08-13 | Page 22

HEVC POTENTIAL - DIRECT-TO-HOME

	MPEG-2 Video	AVC	HEVC
SD	3 - 5 Mbps	1.8 - 3 Mbps	1 - 1.8 Mbps
HD	10 - 18 Mbps	5 - 9 Mbps	2.5 - 4.5 Mbps
4K UHDTV (2160p60 10b)	N/A	N/A	8 – 15 Mbps* 15 – 25 Mbps**

*For typical PQ comparisons **For higher PQ expectations

As with all bitrate projections, these ranges are subject to PQ expectations & content complexity

HEVC POTENTIAL - CONTRIBUTION FOR SIMILAR PICTURE QUALITY

	MPEG-2 Video 4:2:2 8b	AVC 4:2:2 10b	HEVC 4:2:2 10b
HD	35 - 60 Mbps	23 - 40 Mbps	17 - 30 Mbps**
4K UHDTV (2160p60)	N/A	100 - 160 Mbps*	55 - 100 Mbps**

*4 x 1080p60 **Estimated; HEVC Range Extension Main 4:2:2 10 Profile still under evaluation

As with all bitrate projections, these ranges are subject to PQ expectations & content complexity

HEVC SUMMARY

- HEVC is an exciting new standardized codec that greatly has improved bandwidth efficiency
 - $-\frac{1}{2}$ the bitrate of AVC
 - 1/4 the bitrate of MPEG-2 Video
- For Contribution/Studio applications, HEVC Range Extensions (RExt)
 - Expands upon HEVC v1 (consumer/direct-to-home)
 - Profiles include support for 4:2:2, 4:4:4, Intra coded only, 10-bit, 12-bit

> HEVC roll-out will occur at different times for different market segments

- Both software running on COTS hardware and purpose-built hardware will be used
- Some segments require mature ecosystem to be in place (+ regulatory)
 - > New set-top boxes / TV receivers \rightarrow new HEVC chipsets
- For legacy, requires significant bitrate savings for ROI
- First segments, 2014: LTE Broadcast and Internet "Over-the-Top" (multi-screen)
- 2015 & later: Linear Direct-to-Home and Contribution

ERICSSON