Tektronix

QC Testing using Artificial Intelligence

Visual Perception: Block Diagram

Visual Perception Major Factors - Simplified

- Eye Movement
 - Constant Subtle Tracking

- Receptor Persistence and Sensitivity
 - Maximize Contrast to detect changes in illumination and color

- Conditioned Experience
 - Personal Knowledge of Objects and Conditions

Visual Perception: Persistence of Vison

Can you trust your eyes?

Human Vision Models – Types of defects

NOISE

Mean Opinion Score (MOS) Method Human

- Step 1 Show the test audience the best-case training clip
 - This is generally the original unimpaired video clip
- Step 2 Show the test audience the worst-case training clip
 - This is generally the most heavily-impaired version of the reference clip that you will ever ask this test audience to evaluate
- Step 3 Show the test audience any number of video clips and ask them to evaluate each on a scale of 1 to 5
 - These video clips are often, but not always, the same content as the best and worst case but with varying degrees of impairment
 - MOS of 1 = As bad as the worst-case training clip
 - MOS of 5 = As good as the best-case training clip
- Step 4 Calculate the mean average of all viewers' scores for each test clip to produce a final MOS score

Mean Opinion Score WHAT IS MOS?

• Arithmetic mean over single ratings performed by human subjects for a given stimulus in a subjective quality evaluation test

Rating	Label
5	Excellent
4	Good
3	Fair
2	Poor
1	Bad

PQA500 Picture Quality Analysis

- Fast, Accurate, Repeatable, Objective Picture quality measurement
- Picture quality measurement based on Human Vision System Model.
 - DMOS & PQR
- Picture quality comparison across different resolutions and frame rates
 HD, SD, CIF
- Attention/Artifact weighted measurement
- Automatic temporal and spatial alignment

Full-Reference Picture Quality Measurements

PQA

Full-Reference PQ Measurement

The New Way of Evaluating Video Quality

No Reference Picture Quality Measurements

- Single ended MOS score typically running in real-time but difficult to correlate with subjective score
- Difficult to extract parameters from image well correlated to subjective assessment on their own
- No temporal or spatial alignment needed. Operate on multiple image quality scales or formats
- No secondary path needed

No-Reference MOS Scoring Test

No-Reference (blind) PQ Measurements

TekMOS

PROPRIETARY TEKTRONIX MEASUREMENT

- Non-Reference Picture Quality metric
 - Single-ended measurement
 - Can be performed on file-based content or live signals equally well
- **Training Mode** used by Tektronix engineering to build a model from an image library, scored with and without various distortions
- *Measurement Mode* used in product implementations to compute score for arbitrary input images

TekMOS Block Diagram

TRAINING MODE TO CREATE REGRESSION MODEL

TekMOS Block Diagram

TRAINING MODE FOR DISTORSION CLASSIFICATION

TekMOS Block Diagram

MEASUREMENT MODE

Distortion Classes

FEATURE-TO-SCORE CORRELATIONS

TekMOS Test Scoring Results (392 test images)

OVERALL SCORE CORRELATION AND CORRELATION BY DISTORTION CLASS

Measurement Enhancements

TEMPORAL DECAY FILTER

- Very short durations of a few contiguous frames of lower quality are not typically noticed
- **Temporal decay filter** acts like a RC filter similar to a PPM meter with an exponential decay
 - Adjustable time-constant (0 to 20 seconds)
- If the sequence of low-quality frames persist, then the score settles to the low value as set by the time constant thereby lowering the overall average score for the clip

Measurement Enhancements

REGION OF INTEREST

• Detect and grade only the region with highest amount of details in the frame

TekMOS machine learning picture quality

No-reference measurement enables operations monitoring at scale

Live and VOD

- Single view of TekMOS, QoS, and QoE with Reason Codes
- Machine learning non-reference with good correlation to human score
- Practical for multi-stream monitoring applications
- Detects source & encoding degradations
- Adjustable threshold alerts

Measurement Results

TEKMOS GRAPH

- Displays TekMOS scores for entire video stream in one graph
- Divides play duration into ~120 time segments
 - Light colored bars represent minimum & maximum TekMOS scores
 - Darker line represents average TekMOS score per segment

Measurement Results

DISTRIBUTION HISTOGRAM

- Helps the user determine their desired template threshold values
- Light colored bars show percentage of scores in each "bucket" (0.5 score resolution)
- Darker line shows the cumulative percentage of frames worse than a specific score
- Red lines intersect for the Program Threshold

Measurement Results

DISTORTION MAP

- Colored bands in the "negative space" between 5.0 and the measured TekMOS score shows the probability that the score is caused by one of four distortion classes
- Vertically aligned with TekMOS avg/min/max graph to help isolate locations and determine the underlying reasons

Tek Mos Machine Learning NR (blind) PQ

ADVANTAGES OF MACHINE LEARNING APPROACH TO PQ

- Can be trained for any distortion type in any combination
- Can be used as Classifier to estimate **Distortion Type** as well as **MOS score**
- Each training creates a model for the SVM. User can select different models based on preferences of scoring criticality.
- Possible to allow **customer training to create custom models** from private set of images with customer preferred subjective scoring.
- Can be **easily re-trained to create models** that focus on particular current or future compression distortions

TEKMOS & PQA

COMPLEMENTARY TOOLSETS

	TEKMOS	PQA
Type of Measurement	No-Reference	Full-Reference
Result	MOS – 5 to 1	DMOS 0 to 100
Method	Machine Learning	Human Vision System
Performance	Faster than Real-time at 1080p	5-10X Real-time at 1080p
Optimal Use cases	Operational Monitoring "does the quality level meet expectations over time?"	Encoder/Decoder Evaluation "are these components fully optimized?"

CEREBONATION Thank You