Video And Cameras

Presented by John Bradford

Additive Color System

Television Signal Formats--- Tektronix

Analog Composite Video (PAL/NTSC/SECAM)

Andie leget All A

Color Difference Component Analog Video (Y, B-Y, R-Y) 4,2,2 sampling

Y is Created from RGB The Approx. mix is 60% is Green 30% is Red 10% is Blue

What could go wrong?

- Color Not Correct
 - Company logo/brand incorrect color in commercial or graphic.
 - Format conversion caused clip of color in change from one color space to another

Tektronix[.]

- Color Balance
 - Overall image appears washed out
 - Image appears to dark
 - Cameras incorrectly balanced produced different look from scene to scene

5

What's Your Reference

118.

Consumer Displays

What's Your Reference

Calibrated Monitors

Test Equipment

Calibrate Your Eyes

6500K light panels are used in many Color Correction Suites

HDMI Color Accuracy

Measuring HDMI Performance

Android Tablet 75% Colorbars 1080i@29.97

Tektronix[.]

Measuring HDMI Performance

Apple iPad Lightning to HDMI Adapter 75% Colorbars 1080i@29.97

Vector				Bars: 75%
1080p 60 HDMI Input 2A Ref: Internal		Apr 30 16:35:40 Tektronix	ID: WFM5250 HDMI Audio: PP TC: Disabled	

Measuring Set Top Box Performance

Roku3 75% Colorbars 1080i@29.97

Vector				Bars: 75%
720p 60 HDMI Input 2A Ref: Internal		Apr 30 17:42:15 Tektronix	ID: WFM5250 HDMI Audio: PP TC: Disabled	

Measuring Set Top Box Performance

Amazon fireTVstick 75% Colorbars 1080i@29.97

Vector					Bars: 75%
1080p 60 HDMI Input 2A Ref: Internal		Dec 02 13:21:17 Tektronix	ID: WFM5250 HDMI Audio: TC:	PP Disabled	

Gamut and Color Space

Color Model – developing color spaces

- CIE 1931 XYZ color space is still foundation of most color models
- Trichromatic stimulus (color value)
- Lightness decreases towards not shown third dimmension
- Saturation inceases towards edges

Colourimetry change between HD and SD

Notice difference in Green-Magenta transition

 HD YPbPr Waveform display 709 SD YPbPr Waveform display 601

When things are not correct...

•	Input format was		Vid	eo Session		
	signaled as 1080P	Input: HDMI Effective: Auto	Input 1A 1080p 59.94 – RG	Signal: Locked B 444 8b HDMI – HI	OMI	
•	But received data was 601 color space	Colorimetry: Colorspace: Color Depth: TMDS Clock: HDMI/DVI: Pixel Rep. Rate: Quantiz. Range:	601 RGB 8-bit/channel 148.359375 MHz HDMI 1X Default	Input HDCP: Output HDCP: Y Stuck Bits: C Stuck Bits: AP CRC: Field Length Err: Line Length Err:	Disabl Not C 760Eh : OK OK	led onnected A9E5h
		St	atistics Statu	18 Err Secs Err	Fields	% Err Fields
_		RGB Gamu	it Error O	K 1	11	0.0575 %
		Cmpst Gamu	t Error O	K 1	1	0.0052 %
		Black Changed since re	Events: 0 set: Yes Ru	Frozen Events: in Time: 0 d, 00:09:1	0 2	Running
			et. Any arrow	KEY BLODB/BLAILB.		
				olor is wa	snee	a out

Chromaticity

	CIE x	CIE y
Red	0.630	0.340
Green	0.310	0.595
Blue	0.155	0.070
White	0.3127	0.3290
	CIE x	CIE y

ITU 601 Gamut

	CIE x	CIE y
Red	0.640	0.330
Green	0.300	0.600
Blue	0.150	0.060
White	0.3127	0.3290

ITU 709-5 & sRGB Gamut

	CIE x	CIE y
Red	0.708	0.292
Green	0.170	0.797
Blue	0.131	0.046
White	0.3127	0.3290

ITU-R BT.2020

Tektronix*

Academy Color Encoding System (ACES) Color Space

	CIE x	CIE y
Red	0.73470	0.26530
Green	0.00000	1.00000
Blue	0.00010	-0.07700
		ACES

- File based System
- Method for conversion between range of color spaces

Waveform View

Tektronix.

Gamut monitoring - The traditional way RGB domain

Tektronix[•]

RGB and YPbPr Color space.

- YPbPr color cube shows Parallel-Piped of RGB colors
- Certain YPbPr values when converted to RGB will fall outside the allowed range and will be out of Gamut

Impact of Distortions on Different Color Spaces

A signal can be legal in one color space but not valid when converted to another

Cameras

Camera Balancing

- Use calibrated test charts of reference patterns such as step-scales
- Compare measurements with theoretical targets on waveform, vector, and gamut displays
- Test charts complement electronic pattern generators by including the camera's "taking characteristics"
 - Lens and adapters
 - Filters
 - Characteristics of the CCD

White Balance – Camera Shading

- Even brightness white source
 Ambi-Illuminator
- Often the center can be brighter than the edges
- Measure light output with a luminance spot meter
- Set camera gain to 0dB & camera controls to zero
- Set camera F-stop between f4 to f5.6
 - Adjust distance of camera to source
- Defocus Camera

White Balance

- Select WFM display and configure for RGB parade.
- No color hue should be present
 - Red, green, blue channels must be balanced
 - Ideally RGB should be at same level and flat

Original RGB parade waveform

After white shading adjustment

White Balance with the Vector Display

- Monochrome image should be centered tightly on the vector graticule
- Off-center ovular shape indicates shading error

 Use gain controls on the vector display to confirm correct white balance

Tools for Camera Alignment & Matching

Camera Matching

- No two camera are identical
 - Physical Differences
 - Lens
 - Sensor
 - Electronics
- Cannot load preset from one camera to another
- Scene to scene cameras need to match
- Comparison of video levels between camera is required

RGB Waveform Display - Traditional Method

RGB Waveform Display - Traditional Method

Camera Alignment with Luma Qualified Vector Display

Camera Setup with Vector Display

Saturation

The purest (most saturated) color is achieved by using just one wavelength at a high intensity, such as in laser light. If the intensity drops, then as a result the saturation drops. To desaturate a color of given intensity in a subtractive system (such as watercolor), one can add white, black, gray, or the hue's complement.

Tektronix

In this case the picture on the right I have added some white to And the Vector still shows the same as the one on the left

Vector Waveform Display - Method

Luma Qualified Vector Display

regions.

Luma Qualified Vector Display

- Focus on White region to remove color offset
 - Upper limit 766mv
 - Low limit 600mv

- Focus on Black region to remove color offset
 - Upper limit 50mv
 - Low limit -51mv

Camera Alignment Diamond Display

Gamut monitoring — *Diamond* display

How the *Diamond* Display is constructed

Diamond Display for Grayscale Luma signal

- Luma produces vertical straight line on Diamond Display
- Black at center of double Diamond
- White at Apex of double Diamond

Understanding Lightning display

Camera Alignment & Matching

Lightning display for Black Level Adjustment

Diamond Display – Chip Chart

Tektronix.

Lens Flare Adjustment

Camera Alignment & Matching

Flare

Lens flare is the light scattered in lens systems

Flare manifests itself as swift in black levels with a change light level.

Flare Adjustment

- Iris down the camera
- Set black level to 0mv
- Adjust Iris so white chip is 1 to 2 f-stop above 700mv
- Adjust the flares for black chip to 0mv

Setting Gamma

Camera Alignment & Matching

Camera Gamma

Monitor Gamma

Gamma Curve

- Black gamma (aka black stretch) to change the lower end of your contrast curve.
- Adjust knee point and slope to change the upper end of your contrast curve.

Normal Gamma

Tektronix[®]

Camera Alignment & Matching

Low Gamma

High Gamma

Camera Alignment & Matching

Gamma Curve

- Black gamma (aka black stretch) to change the lower end of your contrast curve.
- Adjust knee point and slope to change the upper end of your contrast curve.
- Some camera have Gamma preset
 - Some Cine gammas or Hyper gammas preset take whites up to 109%
 - 709 or broadcast safe whites no higher than 100%

Gamma Curve

- Black gamma (aka black stretch) to change the lower end of your contrast curve.
- Adjust knee point and slope to change the upper end of your contrast curve.

The Matrix Adjustment

Camera Alignment & Matching

The Matrix

Component Analog Video

Y is Created from RGB The Approx. mix is

Camera Test Chart

Ideal Vectorscope Display

- DSC Labs Test Chart
 - Test charts complement electronic pattern generators by including the camera's "taking characteristics"
 - Lens and adapters
 - Filters

- Characteristics of the CCD

Color adjustment using the Vectorscope

Color adjustment using the Vectorscope

- Many cameras give you six matrix adjustment options: R-G, R-B, B-R, B-G, G-R and G-B
- The matrix adjustments allow us to adjust how red, green and blue images mix together.
- The R-G adjustment will change the Red saturation and but Green will change both in hue and in saturation.

Image matching with Capture

Freeze mode

CaptureVu[™] on WFM

