Rolling Shutter

Or, how to make new cameras look like old ones!

Camera Sensors

• Two Types

- CCD Charged Coupled Device
- CMOS Complementary Metal Oxide Semi-Conductor
- They Acquire Images Differently
 - CCD collects an entire frame at once
 - Reads out image one line at a time
 - Global Shutter
 - CMOS collects and reads out one line at a time
 - Bottom of the image taken later than the top
 - Rolling Shutter

Camera Sensors

CCD Sensor

Global Shutter !!

Camera Sensors

CMOS Sensor

Rolling Shutter !!

Okay, so what?

 With fast motion, an object in the image may show up on multiple rows of pixels where it doesn't belong

- Rolling Shutter Effect
- Jello Effect with fast motion and camera shake

 Here's a short video tutorial on what can happen and why it happens

Rolling shutter effect

So, what makes a CMOS like an old camera?

• Film Cameras have a rotating shutter that effectively scans the image from top to bottom

So, what makes a CMOS like an old camera?

 Tube TV Cameras scanned the image from top to bottom, one scan line at a time

And Why Do I care?

- Every maker of broadcast cameras has a top-end camera with CMOS sensors
 - They are seen every day, all day long on all types of programming
- How often have you noticed a problem?
- The effect of rolling shutter is virtually invisible with typical video camera shutter speeds, regardless of how fast the subject is moving
 - Typically, video cameras shoot 1/60 shutter and use ND to keep the aperture in a good range

But, when the camera is shuttered, you can see the effect.

- So, we tested some cameras!
- Used a Chopper to get a controlled object in motion
- Shot comparable 1/3" CCD and CMOS cameras at different object speeds and shutter speeds

The Chopper

CCD - 1/60 shutter 500 RPM

CMOS - 1/60 shutter 500 RPM

CCD - 1/120 shutter 500 RPM

CMOS - 1/120 shutter 500 RPM

CCD - 1/250 shutter 500 RPM

CMOS - 1/250 shutter 500 RPM

CMOS 1/500 shutter 500 RPM

CCD - 1/1000 shutter 500 RPM

CCD - 1/1000 shutter 500 RPM

CCD - 1/2000 shutter 500 RPM

CMOS - 1/2000 shutter 500 RPM

More Cameras

Pocket Cinema Camera CMOS - 1/240 shutter 500 RPM iPhone 4S CMOS - ??? Shutter 500 RPM

More Cameras

Red Epic CMOS, 1/4000 shutter 100 RPM

Red Epic CMOS, 1/4000 shutter 500 RPM

More Cameras

GoPro CMOS, ?? shutter 3000 RPM

Lumix GH1 CMOS, ?? shutter 3000 RPM

Now Let's Look At Video

What's the Future?

New CMOS Cameras with Global Shutters

- CMOS has been gaining favor because they are less expensive to make & consume less power
 - Inherently more noise than a CCD, but camera CPU power has increased such that processing to remove noise makes CMOS more desirable from a cost standpoint
- Global Shutter CMOS loses some of the cost & power advantages over CCD, but is a preferable solution

Questions ?